
Philips Semiconductors
Enhanced Full Duplex A/V Link Layer
IEEE 1394 Reference Design Kit
version 2.2.1
User’s Manual
Copyright © 2000 Philips Semiconductors. All rights reserved.

Philips Semiconductors Enhanced Full Duplex A/V Link Layer

IEEE 1394 Reference Design Kit version 2.2.1

User’s Manual
November 2000
Copyright © 2000, Philips Semiconductors. All rights reserved.

The contents of this document may not be copied nor duplicated in any form, in whole or
in part, without prior written consent from Philips.

Philips provides the information and data included in this document for your benefit, but
it is not possible for us to entirely verify and test all of this information in all
circumstances, particularly information relating to non-Philips manufactured products.
Philips makes no warranties or representations relating to the quality, content, or
adequacy of this information. Every effort has been made to ensure the accuracy of this
manual; however, Philips assumes no responsibility for any errors or omissions in this
document. Philips shall not be liable for any errors or for incidental or consequential
damages in connection with the furnishing, performance, or use of this manual or the
examples herein. Philips assumes no responsibility for any: damage or loss resulting
from the use of this manual; loss or claims by third parties which may arise through the
use of this RDK; loss or claims by third parties which may arise through the use of this
RDK; and for any damage or loss caused by deletion of data as a result of malfunction or
repair. The information in this document is subject to change without notice.
Product and Company names are trademarks or registered trademarks of their respective
owners.

Table of Contents

1 INTRODUCTION... 1

1.1 Philips Semiconductors Full Duplex RDK...1

1.2 About this Manual ..1

1.3 Writing Conventions ..2

1.4 Additional References..2

2 INSTALLATION .. 3

2.1 Unpacking..3

2.2 Minimum Requirements ..3

2.3 Recommended Additional Equipment..4

2.4 Software Installation..4

2.5 Hardware Installation..4
2.5.1 Hardware Settings ...5

2.6 Verifying the Installation...5
2.6.1 Step One: Verify Embedded Code..5
2.6.2 Step Two: Verify Monitor Program..6

3 MONITOR BASICS... 7

3.1 Introduction...7
3.1.1 Asynchronous ..7
3.1.2 Isochronous ...7

3.2 Starting the Monitor...8

3.3 Program Navigation...9
3.3.1 Entering Data...9

3.4 Communication Settings ..9

3.5 Event Viewer...9

3.6 Loading HEX Files ...10

3.7 Quitting ..11

4 MONITOR SECTIONS...13

4.1 Isochronous Services ..13
4.1.1 Transmit Configuration...13
4.1.2 Receive Configuration...14

4.2 Asynchronous Services ..17
4.2.1 Quadlet/Block Read Request ..20
4.2.2 Quadlet/Block Write Request..21
4.2.3 Quadlet Lock Request ...22

4.3 PHY Registers ...23

4.4 Bus Management Menu ...24
4.4.1 Low-Level Bus Functions ...24

4.4.1.1 Bus Reset ..24
4.4.1.2 Display Self-IDs ...24
4.4.1.3 Show Bus Topology ...24
4.4.1.4 Send PHY Config Packet..24
4.4.1.5 Send Link-On Packet..25

4.4.2 Serial Bus Management ..25
4.4.2.1 CSR Quick Summary...25
4.4.2.2 Read CSR Register ...28
4.4.2.3 Write to CSR Register..28
4.4.2.4 Lock CSR Register ...28
4.4.2.5 Configuration ROM..28

4.5 Link Registers ...28

4.6 Camcorder Operations ...29

4.7 L40 Menu...31
4.7.1 Indirect Address Quadlet...31
4.7.2 FIFO Size Registers Block..31

4.8 Extended PHY Packets ..32
4.8.1 Ping Packet..32
4.8.2 Remote Access and Remote Reply Packets ..33
4.8.3 Remote Command and Remote Confirmation Packets.....................................34
4.8.4 Resume Packet ..35

5 EMBEDDED SOFTWARE ..36

5.1 Introduction...36

5.2 BSP Architecture Notes ...37
5.2.1 The Current Platform...37
5.2.2 Threads..38
5.2.3 Semaphores ...38
5.2.4 Events..38
5.2.5 Memory Management ...39
5.2.6 Interrupts ...39
5.2.7 Errors...39
5.2.8 Watermarks ...39
5.2.9 Porting to a new Platform..40
5.2.10 Porting to an Operating System...40
5.2.11 Porting to Another 1394 Link ...40

5.3 API Overview..40
5.3.1 Asynch Module ...42

5.3.1.1 Overview...42
5.3.1.2 AsynchRequestParams structure ..42
5.3.1.3 Implementation Details...43
5.3.1.4 Porting to a Preemptive Multitasking System..45
5.3.1.5 AsynchTxRequest...46

5.4 Application Overview...47
5.4.1 Main ..47
5.4.2 Monitor Support ..47
5.4.3 1394 Reference Implementation...47
5.4.4 Example Code ...47

6 SERIAL INTERFACE DOCUMENTATION ..48

6.1 Overview..48

6.2 Commands and Responses ..48
6.2.1 Register access ..48
6.2.2 Asynchronous communications ..49
6.2.3 Isochronous communications ..49
6.2.4 Misc. 1394 functions...50
6.2.5 Debug & Verification commands ...51

6.3 Events...51

6.4 Downloading..52

7 SOFTWARE COMPLIANCE...53

7.1 Overview..53

7.2 Cycle Master...53

7.3 Isochronous Resource Manager (IRM)..53

7.4 Bus Manager...53

7.5 ISO/IEC 61883 and AV/C..54

8 CUSTOMER SUPPORT ..55

9 TROUBLESHOOTING...56

9.1 General Problems ...56

9.2 Serial communications ...56

9.3 Link and PHY Register Windows ...56

9.4 Asynchronous Transactions ..56

9.5 Bus Resets ..57

9.6 Loading HEX Files ...57

10 ERROR CODES ..58

10.1 Overview..58
10.1.1 PENDING (blink code 1,2)...58
10.1.2 E_ERROR (blink code 1,3)...59
10.1.3 E_REQ_MALLOC_TIMEOUT (blink code 1,4) ...59
10.1.4 E_ASYTXREQ (blink code 1,5)...59
10.1.5 E_ASYTXRESP (blink code 1,6) ...59
10.1.6 E_NO_QUADLETS_AVAILABLE (blink code 1,7)......................................59
10.1.7 E_ROUTER_TABLE_FULL (blink code 1,8) ...59
10.1.8 E_LOOP_DETECTED (blink code 2,1)...60
10.1.9 E_BUS_RESET (blink code 2,2)..60
10.1.10 E_RESP_MANGLED (blink code 2,3) ..60
10.1.11 E_CONF_MANGLED (blink code 2,4) ...61
10.1.12 E_CONF_NO_RESPONSE (blink code 2,5)..61
10.1.13 E_CONF_ERROR (blink code 2,6)..61
10.1.14 E_CONF_TIMEOUT (blink code 2,7) ...61
10.1.15 E_REQ_MANGLED (blink code 2,8)..61
10.1.16 E_PACKET_MANGLED (blink code 3,1) ..61
10.1.17 E_UNSUPPORTED_TCODE (blink code 3,2)..62
10.1.18 E_TIMEOUT (blink code 3,3)..62

10.1.19 E_BR_NO_IDVALID (blink code 3,4)..62
10.1.20 E_BR_NO_HEADER (blink code 3,5)...62
10.1.21 E_BR_MULTIPLE_HEADERS (blink code 3,6) ..62
10.1.22 E_BR_SIDQAV_NOT_SEEN (blink code 3,7) ...62
10.1.23 E_BR_PACKET_TIMEOUT (blink code 3,8) ...63
10.1.24 E_BR_ACK_DATA_ERROR (blink code 4,1)..63
10.1.25 E_BR_INVALID_PACKET (blink code 4,2) ..63
10.1.26 E_INVALID_TOPO_MAP (blink code 4,3)..63
10.1.27 E_INVALID_NODE_TREE (blink code 4,4)..63
10.1.28 E_CABLE_LOOP (blink code 4,5) ..63
10.1.29 E_BR_CYCLE_START (blink code 4,6)...64
10.1.30 E_TOO_MANY_BUS_RESETS (blink code 4,7) ...64
10.1.31 E_INTERNAL (blink code 4,8)..64
10.1.32 E_EVENT_Q_FULL (blink code 5,1)..64
10.1.33 E_INVALID_EVENT_ID (blink code 5,2)..64
10.1.34 E_PHY_TIMEOUT (blink code 5,3)..64
10.1.35 E_LINKPHY_FATAL_INTERRUPT (blink code 5,4)....................................64
10.1.36 E_ASY_FATAL_INTERRUPT (blink code 5,5) ...64
10.1.37 IRX_FATAL_INTERRUPT (blink code 5,6)...65
10.1.38 ITX_FATAL_INTERRUPT (blink code 5,7)...65
10.1.39 E_RAM_CHECK (blink code 5,8) ...65
10.1.40 E_ROM_CHECK (blink code 6,1) ...65
10.1.41 E_TEST_FAIL (blink code 6,2)..65
10.1.42 E_PKTQ_FULL (blink code 6,3)..65
10.1.43 E_PKTQ_EMPTY (blink code 6,4)..65
10.1.44 E_SERIAL_TX_Q_FULL (blink code 6,5)..65
10.1.45 E_SERIAL_RX_OVERFLOW (blink code 6,6)..66

11 GLOSSARY..67

List of Figures

Figure 2-1: Full Duplex RDK Installation Wizard ..4
Figure 3-1: Monitor Main Screen..8
Figure 4-1: Isochronous Transmit Setup Dialog..14
Figure 4-2: Isochronous Receive Setup Dialog...15
Figure 4-3: Quadlet/Block Read Request Dialog..20
Figure 4-4: Quadlet/Block Write Request Dialog...21
Figure 4-5: Quadlet Lock Request Dialog...22
Figure 4-6: Phy Registers Dialog...23
Figure 4-7: Link Register Dialog...29
Figure 4-8: Camcorder Operations Dialog..30
Figure 4-9: Indirect Address Quadlet Dialog..31
Figure 4-10: FIFO Size Registers Dialog..31
Figure 4-11: Ping Packet..32
Figure 4-12: Remote Access Packet ..33
Figure 4-13: Remote Command Packet...34
Figure 4-14: Resume Packet..35
Figure 5-1: Software Layer Diagram...36
Figure 5-2: API Overview ...41
Figure 5-3: Asynchrous Outgoing Request Flow..44
Figure 5-4: Asynchrous Incoming Request Flow..45

List of Tables

Table 4-1: Transmit Mode Register Values...16
Table 4-2: Required Isochronous Transmit Mode Signals ..16
Table 4-3: Preset Receive Mode Register Values ...17
Table 4-4: Isochronous Receiver Signal Required ..17
Table 4-5: Other Output Signals..17
Table 4-6: Asynchronous Transmission Parameters ...18
Table 4-7: Unsupported Asynchronous Transmission Parameters....................................19
Table 4-8: Common Camcorder Operation Settings ...29

Philips Semiconductors  2000 Page 1

1 Introduction
1.1 Philips Semiconductors Full Duplex RDK
The Full Duplex A/V Link Layer Reference Design Kit (RDK) is a versatile platform for
rapid prototyping. It is designed to demonstrate the features of the Philips 1394 Link &
PHY chipset. Using the RDK, designers can rapidly become familiar with the Philips
implementation of the IEEE 1394 Serial Bus standard and product development time can
be considerably reduced.

The RDK consists of three parts: the Evaluation Board, the embedded software, and the
monitor program.

• The Evaluation Board is populated with all of the switches, headers, connectors,
and prototype areas needed to fully understand the Philips chipset. It illustrates
the basic connectivity of the PDI1394 family of 1394 devices and demonstrates
their appropriate use in a hardware design.

• The embedded software configures the Evaluation Board as a fully functional
IEEE 1394 serial bus node. This is extremely useful in prototyping a 1394
product. The software was designed to be extended to your product, with a well
designed porting layer, an API to PDI1394 chipset, including a fully featured
transaction layer, as well as a sample application. The embedded software also
comes with extensive online documentation.

• The monitor program can be run on any PC with a Win32 capable operating
system (Windows 9x or NT). The monitor communicates with the embedded
software on the Evaluation Board by means of a RS232 serial cable. It allows on-
line access to all registers of the PDI1394 chipset and demonstrates many features
of the IEEE 1394 serial bus.

The kit features an embedded C51 microcontroller that is simple to use, yet powerful
enough for the intended application. You can quickly test programs written during
development by downloading them to the Evaluation Board. Interactive debugging is
available through standard console I/O functions (printf, scanf), which communicate with
a host PC through the Evaluation Board serial port. The result is a flexible development
platform for 1394 applications.

1.2 About this Manual
This manual has the following structure:

• Chapter 1, Introduction, is this chapter. It explains the structure of the rest of the
document and introduces the RDK.

• Chapter 2, Installation, describes how to install the RDK hardware and software.

• Chapter 3, Monitor Basics, describes the basic workings of the monitor program.

Page 2 Philips Semiconductors  2000

• Chapter 4, Monitor Sections, describes in detail the workings of the monitor
program.

• Chapter 5, Embedded Software, describes the software running onboard the
Evaluation Board.

• Chapter 6, Serial Interface Documentation, documents the serial interface of the
RDK.

• Chapter 7, Software Compliance, documents what is and is not missing from this
reference implementation of the IEEE 1394-1995 and 1394A Specification.

• Chapter 8, Customer Support, gives you contact information for RDK support.

• Chapter 9, Troubleshooting, helps resolve some basic problems you may
encounter while using the RDK.

• Chapter 10, Error Codes, provides a list of the error codes used by the embedded
software

• Chapter 11, Glossary, defines a number of terms used in this manual.

1.3 Writing Conventions
The names of commands, buttons, and menus are displayed in fixed font like the
following examples: monitor, Show Events. The commands may be entered on the
keyboard, on-screen buttons, or internal to the software.

1.4 Additional References
The IEEE 1394 Serial Bus standard is well documented in the following publications:

1. PDI1394L21 - 1394 AV Link Layer Controller, available in PDF form at
http://www.semiconductors.philips.com/1394/

2. PDI1394P11 – 3-Port Physical Layer Interface, available in PDF format at
http://www.semiconductors.philips.com/1394/

3. 80C31/80C51/8751 - CMOS single chip 8-bit microcontrollers, available in PDF
format at http://www.semiconductors.philips.com/

4. IEEE 1394, High Performance Serial Bus, available from any IEEE publication
house, more information can be found at http://www.1394ta.org/

5. AV/C Digital Interface Command Set General Specification, available from the 1394
Trade Association web site at http://www.1394ta.org/

6. IEC/ISO 61883 Digital Interface for Consumer Electronic AV Equipment
Specification, available from the ISO.

Philips Semiconductors  2000 Page 3

2 Installation
This chapter describes the components of the Full Duplex RDK version 2.0, its minimum
system requirements, recommended additional equipment, and the procedures for
installing the software and hardware and performing verification tests.

2.1 Unpacking
The RDK includes:

• One 12 volt DC power supply

• One 9 pin male to 9 pin female serial cable

• One IEEE 1394 cable assembly

• One 25 pin female to 9 pin male adapter

• Philips CD-ROM with the RDK software

• Philips s/w license agreement

• Philips Hardware Warranty

• Philips Registration Form

• Philips technical support document

• Philips Data Analyzer Brief

• Philips RDK User's Manual version 2.2.1 (this document)

• Philips RDK H/W Ref Manual version 2.2

• Philips RDK Order Form

• One Philips Full Duplex demo board REV 0
Please verify that the packaging is complete. If it is not, please contact Philips customer
support immediately. Contact information is provided in Chapter 8.

2.2 Minimum Requirements
To install and run the monitor program and embedded software development tools, the
following are required:

• A PC running Microsoft Windows 9x or NT 4.0

• One free RS-232 port

• A CD-ROM drive

• A minimum of 5 Megabytes of free hard-drive space

• For best results a screen resolution of 1024x768 is recommended

Page 4 Philips Semiconductors  2000

2.3 Recommended Additional Equipment
Development of embedded software for the RDK requires a compiler and a linker for the
C51 processor. The Keil C51 integrated development environment is recommended. All
RDK embedded software was written using this environment. The Keil IDE is available
from Keil Software at http://www.keil.com/ or 1 (800) 348-8051.

2.4 Software Installation
To install the RDK software:

1. Place the installation CD in the CD-ROM of the target computer.

2. Run the program setup.exe from the installation CD.

3. Use the wizard to select the desired installation options and program locations.

2.5 Hardware Installation
Note: Some parts of the RDK hardware are very sensitive to static. Please ensure
that you are well grounded to prevent damage due to electrostatic discharge.

To install the hardware perform the following steps:

1. Plug the power supply into the Evaluation Board. The power connector is located
approximately 1cm from the left edge along the top of the board. The following
LEDs should light up:

Figure 2-1: Full Duplex RDK Installation Wizard

Philips Semiconductors  2000 Page 5

a. 5v LED (labelled D7)

b. 3.3v LED (labelled D6)

c. PHY Power LED (labelled D8)
If the board has the original EPROM installed the User LED (labeled D2) should
begin to flash in a heartbeat style. This means that the program is operating correctly.

2. Press the RESET button (labelled S2) located near the serial port. The User LED
should light for a few seconds while the EPROM programs the 8051, and then the
heartbeat should start again.

3. Connect the Evaluation Board to the serial port of the host PC using the provided
cable. The PC must not share this serial port with other applications while the monitor
is running.

2.5.1 Hardware Settings
The Evaluation Board is shipped with the jumpers and switches properly configured for
normal use. If further information is required on specific settings please consult the
Hardware Reference Manual.

2.6 Verifying the Installation
To perform the installation tests you will need to know which port the Evaluation Board
is connected to on the PC (COM1 to COM9).

2.6.1 Step One: Verify Embedded Code
A few seconds after power is applied to the board, the embedded software should begin
flashing the User LED in a heartbeat pattern at approximately 80 beats per minute to
indicate that it is working properly. The LED is located next to the link access LED, by
the serial port.

When the embedded processor is heavily loaded the heartbeat pattern will slow, however
it should return to ~80 bpm when the load is reduced.

If another 1394 node is connected, the heartbeat may pause briefly while the bus resets,
but should resume after a short time.

If the embedded software detects a fatal error, the heartbeat will change to a blink code.
Blink codes are sequences of flashes that indicate a problem. For example, a repeating
code of four blinks followed by five blinks (blink code 4, 5) corresponds to the error
E_CABLE_LOOP, which means that the 1394 nodes are connected in a loop. This is not
allowed by the IEEE 1394 specification. For more information on blink codes, see
Chapter 10, Error Codes.

Testing the hardware and embedded software setup is a matter of installing the hardware
and verifying the presence of a heartbeat.

Page 6 Philips Semiconductors  2000

2.6.2 Step Two: Verify Monitor Program
To test the monitor the hardware and firmware must first be working properly. Ensure
that the above steps have been followed to verify the firmware before proceeding with the
verification of the monitor.

Start the monitor by clicking on the “Monitor version 2.2.1” menu item from the start
menu. By default this icon is placed in the Programs sub-menu of the Start menu under a
group entitled “Philips 1394 RDK”.

You can also run the monitor:

1. by selecting Run from the Start menu, browsing to the directory to which you
installed the application (by default “C:\Philips_1394_RDK\SW\bin\Monitor”) and
choosing FWMonWin.exe; or

2. from the DOS prompt by typing FWMonWin, while in the above directory; andusing
the –pCOM# switch, where # represents 1-9.

If the program is able to attach to the requested port and receives the proper responses, it
will display the main screen. The main screen identifies the RDK, and the monitor
release number.
If the monitor fails, it will exit with an error message that should help in identifying the
problem.

Once the program starts successfully the event viewer window should be open and
display that a bus reset was detected. The monitor performs a bus-reset each time it starts
to ensure that information such as the board node and bus topography is up to date.

To further verify the monitor is working properly, open the “Register” menu and choose
“Link” to see the link-layer register values.

If the board is not connected to any other 1394 nodes, the first register on the left,
IDREG, should read 0xFFC0YYZZ. This indicates node 0 on bus 0x3FF, which is the
local bus. The link version is YY (00 for PDI1394L11, 01 for PDI1394L21, and 03 for
PDI1394L40) and the link revision code is ZZ.

If this is the result you obtain, then congratulations, your RDK is working properly.

Philips Semiconductors  2000 Page 7

3 Monitor Basics
3.1 Introduction
The monitor is a real-time interactive program allowing the developer to examine and
control the PDI1394 chipset while the embedded software is running. Access to a full
range of 1394 functional layers is made available, from bit-level probing of the Link or
Physical device to Bus Layer or Transaction Layer function control.

There are two types of IEEE 1394 transactions: asynchronous and isochronous. These
two types are handled differently by the AV Link chip.

3.1.1 Asynchronous
Asynchronous transactions are used for control messages and data transfers where
guaranteed delivery is more important than guaranteed timing. There are four parts to an
asynchronous transaction, request, request confirmation, response and response
confirmation. Confirmations are synchronous; they are placed on the 1394 serial bus
immediately after the request or response. Outgoing confirmations are generated directly
by the AV Link chip and so are never seen by the monitor. Incoming confirmations are
seen asynchronously because of the hardware FIFOs.

There are five types of asynchronous transactions: Block Writes, Block Reads, Quadlet
Writes, Quadlet Reads, and Lock transactions.

The monitor displays asynchronous transactions, along with other asynchronous
information, such as interrupts, in the Event Window. Click the Event Viewer button
in the toolbar to open the Event Viewer window.

3.1.2 Isochronous
Isochronous transactions are used for data that requires a regular data stream, where a
packet arriving late is just as bad as a packet not arriving at all. Audio and video are the
two largest applications where guaranteed timing is more important than guaranteed
delivery, but other applications, such as video games, can take advantage of this as well.

On the IEEE 1394 bus, isochronous transactions could happen regularly every 125
microseconds. This is guaranteed because the specification allows up to 80% of the bus
to be reserved for these transactions. The main advantage of using the Philips AV Link
over competing IEEE 1394 Link devices is that it handles isochronous transactions
completely in hardware. The transactions are available on the AV Link bus stripped of
header information at the time specified in the timestamp. Therefore, these transactions
are not visible to the software, which only monitors the host microcomputer bus.

Most devices that use isochronous bandwidth follow the ISO/IEC 61883 specification.
This is also supported by the AV LINK in hardware.

Page 8 Philips Semiconductors  2000

3.2 Starting the Monitor
The monitor can be started either through the Start menu, either using the run option or
clicking the appropriate icon in the Program submenu, or by typing fwmonwin at a DOS
prompt while in the appropriate directory. An optional command-line switch allows you
to specify the port to use. The syntax of this switch is -pCOM# where # represents the port
(1-9) you elect to use. The software defaults to using COM1.

On startup the software checks to ensure that it is properly connected to an evaluation
board running the correct version of the embedded software. If any errors occur during
startup, the program displays an error message and quits.

If the monitor program determines that it is properly connected, it will reset the 1394 bus,
which can be seen on the Event Viewer dialog. This ensures that the program has an
up-to-date setting for the node id of the Evaluation Board, the number of boards
connected, and the number of self-id packets available to be read.

Once the program has successfully started you should see the following screen:

Figure 3-1: Monitor Main Screen

Philips Semiconductors  2000 Page 9

3.3 Program Navigation
Monitor uses the standard Windows GUI. Navigation between various areas of the
program is done using menus and toolbar.

The status bar at the bottom of the main window displays a brief description of a toolbar
button and, if the cursor rests momentarily on the button, a small pop-up “tooltip”
window appears containing the button name.

Commands are given by clicking on the appropriate button. Commands that require
additional parameters are entered through a dialog box.

3.3.1 Entering Data
The entering of data into the monitor is accomplished by:

1. typing a value into an edit box; or

2. choosing an option from a drop-down combo box.

Note: Unless otherwise indicated, all input fields expect data to be entered in
hexadecimal format without leading characters.

3.4 Communication Settings
By default, the program defaults to the following settings:

Port Speed Parity Data bits Stop bits

COM1 9600bps NONE 8 1

The port setting can be changed with the -pCOM# command line switch, where # is a
number from 1 to 9.

Note: Except for the port number, the supplied embedded program is only
designed to work at the default settings so take care in changing them.

3.5 Event Viewer
The Event Viewer receives all events generated by the embedded code. Events fall into
two categories, events that inform you of asynchronous bus traffic and those that inform
you of interrupts that have occurred.

Certain commands return a response of OK internally, but result in a more detailed event.
An example of this is the command to read the configuration ROM. The OK response to
this command indicates that the request to read the configuration ROM succeeded; the
events following the command actually contain the contents of the configuration ROM
CSRs.

An example of a typical Event Window display is:

Page 10 Philips Semiconductors  2000

11:48:37 Each event is tagged with the time at which it occurred.
Bus Reset Detected A bus reset was detected on the local bus.

11:48:37
Received a LNKPHYINT: A Link/PHY interrupt occurred.

Cycle Lost Which interrupt

11:48:54 The next nineteen lines are Self-ID packet information
Self IDs
length: 0x4
CRC: 0x9865
generation_number 0x3
node_count: 0x2
self_id_count: 0x2
Node Link GapCnt Speed Contend Power Init Reset
0 1 63 1 0 0 1
Ports:
0:UNCONN
1:PARENT
2:UNCONN

Node Link GapCnt Speed Contend Power Init Reset
1 1 63 1 1 7 0
Ports:
0:UNCONN
1:CHILD
2:UNCONN

11:49:15
Transmitted an Asynchronous Request: Performed Quadlet Read Req. of CSR 0x80

spd: 0
(100Mb/s)

tLabel: 0
rt: 0

(retry 1)
tCode: 4

(Quadlet read request)
Dest. ID: 0xFFC1
Dest. Offset High: 0xFFFF

3.6 Loading HEX Files
Recent versions of the L40 RDK have been fitted with flash programmable 89C51
microcontroller units. We recommend using the flash programming method detailed in
the Addendum to this User Manual, it’s titled Programming L40 RDK Flash Memory
Microcontrollers and is included on the CDROM that accompanied this RDK. Please

Philips Semiconductors  2000 Page 11

read the Addendum and load the ISP software from the CDROM in order to use the flash
ROM capabilities of the MCU. Benefits of flash programming are (1) non-volatile MCU
code and (2) selectable erase/write memory slices that can (3) reduce your programming
time.

Hex Download of code to RAM memory space:

The embedded software for the RDK is designed so that a new program can be
downloaded and started to take its place. Clicking this button on the toolbar opens
Select Hex File to Download to Board dialog. The following steps detail how to replace
the default embedded program with a new one.

Note: It is only possible to successfully download a HEX file when the embedded
software is running from the EPROM. To make sure of this, press the reset button
on the board before beginning any download.

1. Write the program and compile it;

2. Convert it to a .hex file;

3. If recompiling the supplied embedded program, use the supplied checksum generator,
Check, as follows: check 0x12341234 a.hex > b.hex where ‘0x12341234’ is the
bottom 32 bits of the globally unique id, found in the 1394 configuration ROM, and
‘a’ and ‘b’ can be any file name;

4. Start the monitor;

5. Select Load Hex… from the File menu; and

6. Select the .hex file created in the latter of step 2 (or 3 if it occurred).

At this point, the program should begin downloading. While the hex file is being
downloaded, the program displays a dialog informing you that the download is in
progress. The monitor is unable to perform any other actions while the download is in
progress. A dialog box will appear to inform you that the download has finished.

Even if the new program is perfectly compatible with the shipped version, because you
are now running from RAM the download may be followed by a ROM Check error.

3.7 Quitting
The monitor can be shut down in any of the following ways:

1. Clicking on the main screen;

2. Double-clicking the system menu; or

3. Choosing Exit from the File menu.

Page 12 Philips Semiconductors  2000

Closing the program will not have any effect on the embedded software and will free up
the communications port for use by other applications.

Philips Semiconductors  2000 Page 13

4 Monitor Sections
4.1 Isochronous Services
The 1394 architecture provides services for two types of data: asynchronous and
isochronous. Isochronous data is guaranteed to have a constant bandwidth, and to arrive
within a certain time span. Isochronous data is typically continuous audio or video data
that must arrive at a certain rate but not at any specific point in time.

The evaluation board can be used as an isochronous transmitter or receiver by connecting
an appropriate device to the byte-wide AV ports on the board and connecting another
isochronous receiver/transmitter to one of the 1394 ports. Once the isochronous
parameters have been configured for the node, no further intervention is required.

For example, a 1394 capable video camera could be set up to transmit an isochronous
video stream to the board node. The board would then transmit that data out either port 1
or port 2 to the receiver.

4.1.1 Transmit Configuration
Configuration of the board node for isochronous transmission involves setting the
appropriate bits in the AV Link registers. This dialog allows direct access to register
values and breaks out the register values for ease of use.

Note: Before changing any field, use the Stop Transmit button in the
Isochronous Transmit Setup dialog. This will prevent isochronous transmission
error. Once the changes have been made, restart transmission by clicking the
Start Transmit button.

When the board node is used as a transmitter, any channel can be chosen for the
transmitter, as long as the receiver on the other end of the 1394 bus knows to expect data
on that channel.

Note: Many video cameras default to channel 63 as that is the broadcast channel.

Clicking this button on the toolbar opens Isochronous Transmit Setup Dialog.

Refer to Online Help button on the toolbar about Transmit Setup for more details.

Page 14 Philips Semiconductors  2000

4.1.2 Receive Configuration
This window allows direct access to the registers required to set up the node as an
isochronous receiver.

Note: Before changing any field, use the Stop Receive button in the Isochronous
Receive Setup dialog. This will prevent isochronous reception error. Once the
changes have been made, restart reception by clicking the Start Receive
button.

When the board node is used as a receiver, the channel must correspond to the channel
used by the transmitter.

Clicking this button on the toolbar opens Isochronous Receive Setup Dialog.

Refer to Online Help button on the toolbar about Receive Setup for more details.

Figure 4-1: Isochronous Transmit Setup Dialog

Philips Semiconductors  2000 Page 15

The following table shows the register values for the different preset transmit modes.
The embedded software automatically sets these values when entering the mode, so these
values are for reference only.

MPEG-2 DSS DVC

ITXPKCTL register (address 0x20)

TRDEL (bits 23-16) 0x40-0xA0 0x40-0xA0 0x40-0xA0

MAXBL (bits 5-8) 16 1 1

EN_ITX (bit 4) 1 1 1

PM (bits 3-2) 2 0 1

EN_FS (bit 1) 0 0 1

RST_ITX (bit 0) 0 0 0

ITXHQ1 register (address 0x24)

DBS (bits 23-16) 6 35 120

Figure 4-2: Isochronous Receive Setup Dialog

Page 16 Philips Semiconductors  2000

FN (bits 15-14) 3 0 0

QPC (bits 13-11) 0 0 0

SPH (bit 10) 1 1 0

ITXHQ2 register (address 0x28)

FMT (bits 29-24) 32 33 0

FDF/SYT (bits 23-0) 0 0 0

ITXCTL register (address 0x34)

TAG (bits 15-14) 1 1 1

CHANNEL (bits 13-8) 0-63 0-63 0-63

SPD (bits 5-4) 0 / 1 0 / 1 0 / 1

SYNC (bits 3-0) 0 0 0

The following table lists the required signals for the preset isochronous transmit modes,
where AVn represents AV Port 1 (J8), or AV Port 2 (J10).

Signal Name Pin Number(s) MPEG-2 DSS DVC (525-60)

Avn D[0:7] 2, 4, 6, 8, 10, 12,
14, 16

Required Required Required

Avn CLOCK 18 0-25 MHz 3.33 MHz 3.84 MHz

Avn SYNC 26 Required Required Required

Avn FSYNCIN 32 Don’t Care Don’t care 29.97 Hz

Avn ENDPCK 30 GND Required GND

Avn VALID 24 Required Required Required

The following table shows the register values for the different preset receiver modes. As
with the transmit values, they are automatically set by the embedded software when
entering the mode.

MPEG-2 DSS DVC

IRXPKCTL register (address 0x40)

EN_IRX (bit 4) 1 1 1

Table 4-1: Transmit Mode Register Values

Table 4-2: Required Isochronous Transmit Mode Signals

Philips Semiconductors  2000 Page 17

BPAD (bits 3-2) 0 2 0

EN_FS (bit 1) 0 0 1

RST_IRX (bit 0) 0 0 0

IRXCTL register (address 0x50)

TAG (bits 15-14) 1 1 1

CHANNEL (bits 13-8) 0-63 0-63 0-63

The only signal that may be required to be supplied for the isochronous receiver is the
clock, where AVn represents AV Port 1 (J8), or AV Port 2 (J10). Alternatively, the
RXAP_CLK field may be set to a value other than "00" in the IRXPKTCTL register.

Signal Name Pin Number MPEG-2 DSS DVC (525-60)

AVn CLOCK 18 0-25 MHz 3.33 MHz 3.84 MHz

The other signals are outputs, and may or may not appear depending on the mode, where
AVn represents AV Port 1 (J8), or AV Port 2 (J10).

Signal Name Pin Number(s) MPEG-2 DSS DVC (525-60)

AVn D[0:7] 2, 4 ,6, 8, 10, 12, 14, 16 Yes Yes Yes

AVn SYNC 26 Yes Yes Yes

AVn FSYNCOUT 32 No No Yes

AVn VALID 24 Yes Yes Yes

AVn ERR[0] 22 Yes Yes Yes

AVn ERR[1] 28 Yes Yes Yes

4.2 Asynchronous Services
Asynchronous data is the second type of data transmitted on the 1394 bus. It is data that
is not guaranteed a fixed bandwidth, and arrives at random times. 20% of the bandwidth
is reserved for asynchronous data. Asynchronous data is sent after all isochronous data
has been transmitted. Asynchronous data is packaged into packets consisting of one or
more quadlets, or 32 bit values.

Table 4-3: Preset Receive Mode Register Values

Table 4-4: Isochronous Receiver Signal Required

Table 4-5: Other Output Signals

Page 18 Philips Semiconductors  2000

There are three types of asynchronous transactions defined in the 1394 standard: read,
write and lock, and two amounts of data, quadlets, or blocks. Quadlets are simply 32 bit
quantities, whereas blocks are a series of sequential 8-bit bytes, with the number of bytes
set as part of the transaction. Since only quadlets can be transmitted, blocks are padded
with zeros when necessary to the next quadlet.

The various asynchronous transmissions require different parameters; the following table
explains the parameter choices:

Parameter Description and Comments

Speed The speed of the transaction in bits per second:
100Mb/s
200Mb/s
400Mb/s

Destination Node The node with which you are exchanging packets

CSR Address The CSR address you are writing to/reading from. An offset of
0xFFFF F000 0000 (the start of the initial register space) is
added to the address you specify.

Data The quadlet of data you wish to write.

Number of Bytes to
Write

The number of bytes you wish to write as part of a Block
Write Request. After you close the dialog, you will see a
number of dialogs asking for a quadlet to write.

Starting CSR
Address

Used in the Block Write Request to determine what CSR
address to use as a starting address when writing a block of
data.

Extended
Transaction Code

Identifies the extended transaction code used in lock requests.
This transaction code identifies a mathematical operation to be
performed on the data in the CSR register mentioned.
mask_swap
compare_swap
fetch_add
little_add
bounded_add
wrap_add
vendor-dependant

Table 4-6: Asynchronous Transmission Parameters

Philips Semiconductors  2000 Page 19

Parameter Description and Comments

Retry Code The type of retry protocol to use in a transaction:
retry1: dual-phase retry protocol
retryX: single-phase retry protocol
retryA: dual-phase retry protocol
retryB: dual-phase retry protocol

Note: retryX is the only protocol currently supported.
This is Errata E-2 on the PDI1394L21 errata sheet.

Most of the asynchronous transactions involve sending and receiving asynchronous 1394
events, so the record of the transmitted event as well as any responses or confirmations
will appear in the Event Viewer.

Table 4-7: Unsupported Asynchronous Transmission Parameters

Page 20 Philips Semiconductors  2000

4.2.1 Quadlet/Block Read Request
Clicking this button on the toolbar brings up a dialog that allows you to send a
Quadlet or Block Read Request on the 1394 bus, asking that the specified node return
the value in the specified CSR register. Enter the CSR Offset to start from and Data
Length (in bytes) to read. A Quadlet Read Response packet will return this value.

Refer to Online Help button on the toolbar about Quadlet or Block Read Request
for more details.

Figure 4-3: Quadlet/Block Read Request Dialog

Philips Semiconductors  2000 Page 21

4.2.2 Quadlet/Block Write Request
Clicking this button on the toolbar brings up a dialog that allows you to transmit a
Quadlet or Block Write Request on the 1394, asking that the specified node change
the value of a CSR register to the specified new value. The new value is entered in the
edit box right above the Add button.

Refer to Online Help button on the toolbar about Quadlet or Block Write Request
for more details.

Figure 4-4: Quadlet/Block Write Request Dialog

Page 22 Philips Semiconductors  2000

4.2.3 Quadlet Lock Request
Clicking this button brings up a dialog that allows you to transmit a Lock Request on
the 1394 bus. The 'Lock' transaction combines the read, compare, and conditional write
operations. The dialog allows you to choose the type of transaction, the data and test
arguments (if applicable), and then transmits the packet to the specified node.

Refer to Online Help button on the toolbar about Quadlet Lock Request for more
details.

The monitor supports the following lock transactions (shown using C/C++ syntax):

Lock Function Update Function
mask_swap new_value = data_value + (old_value & ~arg_value);
compare_swap if (old_value == arg_value) new_value = data_value;
fetch_add new_value = old_value + data_value;
little_add (little) new_value = (little) old_value + (little) data_value;
bounded_add if (old_value != arg_value) new_value = old_value + data_value;
wrap_add new_value = (old_value != arg_value) ? old_value + data_value

data_value;

Figure 4-5: Quadlet Lock Request Dialog

Philips Semiconductors  2000 Page 23

However, the embedded software only supports compare_swap, as it is the only function
required by the 1394 Specification.

4.3 PHY Registers
As the name implies, the PHY Registers dialog allows access to the physical layer
registers on the Philips PHY chip. This dialog can be used to diagnose problems with the
cable physical layer, or to visualize the operation of the PHY chip.

Clicking this button on the toolbar opens Phy Registers Dialog.

P21 registers are divided into two groups: Base and Paged, and are displayed as push
buttons on the left side of the dialog (PHY 00 through PHY 0F). Register buttons are
displayed as “flat” push buttons when the register is read only (R) or “raised” when the
register can be modified (R/W). To change a PHY register’s value, just click on the
appropriate button and type in a new value. Register field information is displayed within
the grid list located to the right of the register buttons. Selecting the desired tab located
across the top of the list (Base, Port Status, Vendor ID, or Vendor Dependent) controls
the information displayed. When Port Status tab is selected you may use the port 1, 2, or
3 push buttons to view a different port. Use the Refresh or Continuous Refresh buttons to
update the dialog’s information.

Figure 4-6: Phy Registers Dialog

Page 24 Philips Semiconductors  2000

4.4 Bus Management Menu
This menu allows you to access the functionality of the AV LINK chip relating to the
Serial Bus Management layer. It allows the initiation of a bus reset, display of self-id
packets or bus topology, and other features described below.

4.4.1 Low-Level Bus Functions

4.4.1.1 Bus Reset
A bus reset is automatically generated when a node is added to or removed from the 1394
bus. This button allows you to manually generate a bus reset, which ensures that the
Event Viewer window contains the current value for the local node ID and the number of
nodes connected.

4.4.1.2 Display Self-IDs
Clicking this button initiates a read of the topology CSR registers in the AV LINK
chip and interpretation of the Self-ID packets to provide information about the nodes.
The results are returned in the form of an event, which will be visible in the Event
Viewer.

4.4.1.3 Show Bus Topology
This option is similar to that of the Display Self-IDs button in that the topology
registers are read, but the data is returned in a graphical (tree) format. Clicking this
button on the toolbar opens Bus Topology Dialog.

4.4.1.4 Send PHY Config Packet
A PHY config packet serves two purposes: to designate a specific node as root, and to
modify the bus gap count. The changes requested by a PHY config packet are sent to all
nodes on the bus and the PHY registers are updated accordingly. However, the node with
the root hold-off flag will not become root until the next bus reset.

For example, to send a PHY config packet in a 1394 network with two Full Duplex RDK
nodes:

1. Use the monitor connected to the node currently set as root.

2. Select Send PHY Config Packet from Bus menu.

3. Enter the following as parameters:

a. Check the Force Root checkbox

b. Enter 0 for the physical ID

c. Check the Gap Count checkbox

d. Enter 2E for the gap count

e. Send the packet by choosing Send

Philips Semiconductors  2000 Page 25

4. Examine the PHY Registers menu on the node and verify the following settings:

a. Physical ID: 0

b. Root Flag: 0

c. Root Holdoff: 1

d. Gap Count: 0x2E

5. Generate a bus reset and verify that the configuration has changed by reading the
registers

a. Physical ID: 1

b. Root Flag: 1

c. Root Holdoff: 1

d. Gap Count 0x2E

4.4.1.5 Send Link-On Packet
A link-on packet is used to 'wake-up' the link layer of nodes that are in a power-saving
standby mode. This command has no effect on Full Duplex boards as the AV LINK
Links are always on.

4.4.2 Serial Bus Management

4.4.2.1 CSR Quick Summary
The CSR package handles all CSR requests except for RESET_START, which is handled
immediately by the Link chip.

The CSR package is designed as an implementation guide, it does not provide a full set of
registers that is compliant with IEEE 1394-1995or IEC/ISO 61883.

All required core CSR registers and Serial Bus dependent registers have been fully
implemented and should be compliant with IEEE1394-1995 and IEEE 1212-1994. Some
of the optional fields and registers have also been implemented.

Not all registers have full backing code. For instance, although the plug registers are
implemented, setting a plug register does not start a connection.

The optional registers MAINT_UTILITY, MESSAGE_REQUEST, and
MESSAGE_RESPONSE have been implemented but do not have any effect. They are
useful as a scratch test pad area. The monitor also uses this area for board-to-board
communications.

The BUSY_TIMEOUT register and the SPLIT_TIMEOUT register have a default that is
larger than that specified. These are the recommended values for slow 8051
implementations such as ours. We do not adjust value on other nodes of the network, but
that will have to be done to avoid split timeout errors.

Page 26 Philips Semiconductors  2000

Offset CSR Quadlet
Read

Quadlet
Write Lock Block

Read
Block
Write Description Reference

00016,00416
STATE_CLEAR
STATE_SET • • State and control information 1394-1995 8.3.2.2.1

00816 NODE_IDS • • Specifies 16-bit node ID value 1394-1995 8.3.2.2.3

00C16 RESET_START • Resets the PDI1394L21.
Implemented in hardware 1394-1995 8.3.2.2.4

01816,01C16
SPLIT_TIME_OUT_HI
SPLIT_TIME_OUT_LO • • Split-request time-out 1394-1995 8.3.2.2.6

08016-0FC16
MESSAGE_REQUEST
MESSAGE_RESPONSE • • • • • Optional message passing

registers 1394-1995 8.3.2.2.11

20016 CYCLE_TIME • • For nodes providing
isochronous services.

1394-1995 8.3.2.3.1

20416 BUS_TIME • • For nodes that require
synchronized bus time.

1394-1995 8.3.2.3.2

21016 BUSY_TIMEOUT • • For transaction capable nodes. 1394-1995 8.3.2.3.5

21C16 BUS_MANAGER_ID • • For selecting or locating the bus
manager. 1394-1995 8.3.2.3.6

22016 BANDWIDTH_AVAILABLE • • Bandwidth allocation 1394-1995 8.3.2.3.7

22416,22816 CHANNELS_AVAILABLE • • Channel allocation 1394-1995 8.3.2.3.8

23016 MAINT_UTILITY • • For introducing diagnostic error
conditions. 1394-1995 8.3.2.3.10

40016-7FC16 CONFIG_ROM • • Configuration ROM 1394-1995 8.3.2.5

90016 OMPR • • Output Master Plug Register 61883 7.5

Philips Semiconductors  2000 Page 27

90416 OPCR • • Output Plug Control Register 0 61883 7.7

98016 IMPR • • Input Master Plug Register 61883 7.6

98416 IPCR • • Input Plug Control Register 0 61883 7.8

100016-13FC16 TOPOLOGY_MAP • • Topology Map 1394-1995 8.3.2.4.1

200016-2FFC16 SPEED_MAP • • Speed Map 1394-1995 8.3.2.4.2

Page 28 Philips Semiconductors  2000

4.4.2.2 Read CSR Register
This operation is the same as the read operation available from the Asynchronous
Services from Link menu. It sends a Quadlet Read Request on the 1394 bus to the
requested node asking for the contents of a CSR register to be sent back as a Quadlet
Read Response.

4.4.2.3 Write to CSR Register
This operation is the same as the Quadlet Write Request available from the
Asynchronous Services from Link menu. It attempts to have a node on the 1394 bus
change its contents to the new value supplied.

4.4.2.4 Lock CSR Register
This operation is identical to the Quadlet Lock Request command available through
the Asynchronous Services from Link menu.

4.4.2.5 Configuration ROM
Clicking this button initiates a scan of the configuration of the ROM CSR registers,
displaying the formatted result in the Event Viewer.

4.5 Link Registers
The Link Registers dialog displays all but two of the link registers. The registers, RREQ
and RRSP, are used internally and cannot be displayed. The remaining registers are all
visible and, where applicable, changeable.

Clicking this button on the toolbar opens Link Registers Dialog.

Philips Semiconductors  2000 Page 29

To change a register’s value, just click on the appropriate button and type in a new value.

4.6 Camcorder Operations
This dialog provides an easy way to send the most common camcorder commands
through the 1394 interface. These commands are documented in the AV/C Digital
Interface Command Set General Specification.

While the AV/C spec provides for a rich variety of operations, the camcorder dialog uses
only a commonly implemented subset. All of the operations have the following settings
in common:

Setting Value Label

Command type (ctype): 0 CONTROL

Subunit Type 4 Video Cassette Recorder (VCR)

Subunit ID 0 Instance Number 0

Figure 4-7: Link Register Dialog

Table 4-8: Common Camcorder Operation Settings

Page 30 Philips Semiconductors  2000

The commands are a combination of a one-byte opcode followed by a one-byte operand.
For example, the Wind opcode is 0xC4, and has four possible opcode values:

1. High Speed Rewind: 0x45

2. Stop: 0x60

3. Rewind: 0x65

4. Fast Forward: 0x75
Note: The camcorder commands use a subunit type corresponding to a VCR. This
is due to the fact that this type has been show to be the most compatible with the
widest variety of 1394-capable video cameras.

Like the Quadlet/Block Write Request and similar dialogs, the Camcorder Dialog allows
a choice of a destination node and speed, then provides buttons which display a graphic
showing the camcorder function they provide.

Clicking this button on the toolbar opens Camcorder Operations Dialog.

Pressing a button on this dialog generates a Quadlet Write Request to the specified
node writing the created AV/C frame to the FCP_COMMAND CSR register at address
0xFFFF F000 0B00.

Figure 4-8: Camcorder Operations Dialog

Philips Semiconductors  2000 Page 31

4.7 L40 Menu
This menu allows you to access new features of the PDI1394L40 chip. There are two
menu items under L40 and they are enabled only for L40 chip. Each menu item is used
to bring up an appropriate window such as: Indirect Address Quadlet and FIFO Size
Registers Block.

4.7.1 Indirect Address Quadlet
This dialog allows access to new L40 individual registers that are addressed via indirect
addresses.

Refer to Online Help button on the toolbar about Indirect Address Quadlet for
more details.

4.7.2 FIFO Size Registers Block
The FIFO Size Registers Block dialog allows you to access the following FIFO registers
such as: RRSPSIZE (0x100), RREQSIZE (0x104), TRSPSIZE (0x110), TREQSIZE
(0x114), IRXSIZE (0x120), and ITXSIZE (0x130). Consult data sheets for more
information.
Refer to Online Help button on the toolbar about FIFO Size Registers Block for
more details.

Figure 4-9: Indirect Address Quadlet Dialog

Figure 4-10: FIFO Size Registers Dialog

Page 32 Philips Semiconductors  2000

4.8 Extended PHY Packets
The 1394a supplement identifies extended PHY packet types that include:

• Ping packet

• Remote Access packet

• Remote Reply packet

• Remote Command packet

• Remote Confirmation packet

• Resume packet

Each of these extended packet types can be accessed through P21 menu by clicking the
Extended PHY Packets… menu item.

4.8.1 Ping Packet
The ping packet is used to cause the target node to transmit self-ID packet(s) that reflect
the current configuration and status of the PHY.

The Target Node (dec.) specifies the physical node identifier of the destination of this
packet. In response to a ping packet, the target PHY broadcasts its self-packet(s). The
activity can be viewed in the Event Viewer dialog by clicking Event Viewer button in
the toolbar if it is not opened.

Figure 4-11: Ping Packet

Philips Semiconductors  2000 Page 33

4.8.2 Remote Access and Remote Reply Packets
The remote access packet offers a means of accessing a PHY register within the target
node.

The Target Node (dec.) specifies the physical node identifier of the destination of this
packet. There are two types of registers that are supported for a remote access packet:

• Base Register: One of the eight base PHY registers is to be read. The Register
edit box specifies the target register.

• Paged Register: One of the eight paged registers is to be read. The Page edit box
selects one of the eight groups of paged registers to be read. The Register edit box
specifies the target register within the selected page. The Port edit box identifies the
target port if the page is 0 (PHY port registers).

The remote reply packet returns the read data specified by the remote access packet. The
data is the current value of the PHY register addressed by the remote access packet. If
the register is reserved or unimplemented, the data will be zero.

The activity can be viewed in the Event Viewer dialog by clicking Event Viewer
button in the toolbar if it is not opened.

Figure 4-12: Remote Access Packet

Page 34 Philips Semiconductors  2000

4.8.3 Remote Command and Remote Confirmation Packets
The remote command provides a mechanism to issue a variety of commands to the
selected port within the target PHY.

The Target Node (dec.) specifies the physical node identifier of the destination of this
packet. The Port edit box selects one of the PHY’s ports as the target of the command.

The remote confirmation packet is returned by the node that was targeted by a remote
command packet to verify that the command has been successfully processed, or not.
The confirmation packet also returns current status for the selected port.

The activity can be viewed in the Event Viewer dialog by clicking Event Viewer
button in the toolbar if it is not opened.

Figure 4-13: Remote Command Packet

Philips Semiconductors  2000 Page 35

4.8.4 Resume Packet
The resume packet is broadcast to all PHYs to command that all connected and
suspended ports must resume normal operation.

The resume packet is broadcast; therefore there is no reply. The activity can be viewed in
the Event Viewer dialog by clicking Event Viewer button in the toolbar if it is not
opened.

Figure 4-14: Resume Packet

Page 36 Philips Semiconductors  2000

5 Embedded Software
5.1 Introduction

Hardware

BSP

AVLink API
fwmon
support

sample app

1394 stack

There are three parts to the embedded software delivered with the Philips 1394 RDK.
These are the Board Support Package (BSP), the Application Programming Interface
(API), and the application.

The application performs two roles:

1. It is a sample that may be used as a guideline in programming user applications and
completing the 1394 stack; and

2. It supports the monitor program.
The API provides an interface to the Philips 1394 Link Layer controller chips for user
applications and the 1394 protocol stack.

The BSP is a layer that abstracts the hardware and the operating system functionality to
increase portability, modularity, and functionality. It is written in a combination of
assembly language, Keil C Compiler specific C and ANSI C so that the API and the
application may be written in highly portable ANSI C.

Figure 5-1: Software Layer Diagram

Philips Semiconductors  2000 Page 37

There is no operating system included with the Philips 1394 RDK. However, services
traditionally provided by an operating system that would be useful to those using the
RDK software, programming with the API or porting the system are included in the BSP.

The first service that is provided by the BSP is hardware abstraction. The module in the
BSP that is primarily responsible for this duty is the HW module. The Startup, SelfTest,
Serial and Timer modules are the only other modules in the system and the BSP that
directly access hardware, as these modules also provide hardware abstraction.

The other major service that is provided by the BSP is operating system abstraction.
Event, PktQ, Watermark, and Error are the modules that primarily perform this task.
Because there is no operating system, these modules implement the required features as
well as abstracting them. These modules have been written to be as portable as possible,
and could be used as is with an operating system, but efficiency would be gained by
using operating system features. The only exception is the Watermark module, which
was written in assembly language.

5.2 BSP Architecture Notes
This section talks about the BSP, its implementation and some of the issues involved in
using the BSP and porting it to another platform. It is not just useful to those porting the
BSP; it explains some of the structure of it and some of the tradeoffs made of in its
implementation. Therefore, it is useful for those just using the BSP as well. This section
does not explain details of the BSP. The documentation that describes each BSP module
contains these details. As always, the code is the final reference.

5.2.1 The Current Platform
The Evaluation Board uses an 8051 with 64K of RAM and 64K of ROM as its
microprocessor system. The software is mainly written in C using the Keil C compiler.

The 8051 was not designed to run high level languages. The largest limitation is the 128-
byte stack limitation. On the 8051, the stack is held in internal memory, which is limited
to 256 bytes.

If the Keil 8051 C compiler stored all function parameters and automatic variables on the
stack, you would very quickly run out of stack space. The Keil compiler stores function
parameters and automatic variables in fixed memory locations. This reduces the stack
usage for a function call to two bytes for the return address, but also has the effect of
making functions non-reentrant. Functions may be explicitly declared reentrant,
however. The only function that does so is the BRRecurseDepth function.

The RDK is written using the large memory model. This means that all variables are
stored in external memory. Pointers are generally declared using the _XDATA
declarator. This makes them smaller and more efficient. _XDATA may simply be
#define'd away on other systems.

Page 38 Philips Semiconductors  2000

5.2.2 Threads
As there is no operating system underlying the current implementation, threads may seem
like a misstatement. In the current system, this refers only to the main loop thread and to
the interrupt service routine thread, emphasizing the fact that the code was written with
the possibility of porting to a true multitasking operating system in mind.

In some places in the documentation, the interrupt service routine is modeled as a thread
that runs completely within a critical section. In other places functions with embedded
critical sections have a functionally identical counterpart with the suffix ISR. This
indicates a function without the critical section markers, designed to be called from
interrupt service routines. In some cases, functions with the suffix ISR have been created
that are identical to the non-ISR functions. These are created because of the non-
reentrant nature of the 8051 - we cannot call from the ISR functions that are also called
by the main loop thread. These identical functions may be removed when porting to a
different platform.

5.2.3 Semaphores
Throughout the code, there are variables that are used in a manner similar to semaphores.
These have been noted in the comments and documentation. Their usage as semaphores
imposes limits on how they may be used. For example, one thread may only be allowed
to increment the variable while the other thread may only decrement it. Variable access
may also have to be protected by a critical section.

When porting the code it may be desirable to replace these pseudo-variables with a true
semaphore.

One particular semaphore function in the HW module is called LocalLock. This function
works similarly to the 1394 compare and swap operation. A search for this function as
well as a search for critical sections (denoted by ENTER_CRITICAL_SECTION and
DISABLE_LINK_INTERRUPTS), should quickly locate most pseudo-semaphores and
other thread-aware code structures.

5.2.4 Events
One key component of the BSP and the RDK software is the message passing mechanism
implemented inside the Event package. You may refer to the documentation on the
Event package in Section 5.3 for further details.

Events have two primary purposes, they are used to pass messages between threads, and
they are used to pass messages up the protocol stack. Function calls may be used to pass
messages down the protocol stack.

Events also provide the scheduling for this system. The only duties of the main loop are
dispatching events and flashing the heartbeat.

All of the events used by the program are listed in the Event List.

Philips Semiconductors  2000 Page 39

5.2.5 Memory Management
There is no memory management in the system, which has two major consequences:

1. In cases where it may be desirable to have memory allocation, the function usually
calls for a pointer to scratch memory. This shifts the responsibility for the memory
allocation to the application, which has a better grasp on memory usage and can reuse
memory easier than can the BSP.

2. Many BSP packages are hardcoded in ways that would not be necessary in an
environment with a malloc. The Packet Queue (PktQ) module is perhaps the best
example of this - all queues use #define's to represent the queue size, length and
handle rather than using the dynamic allocation that would be more convenient.

5.2.6 Interrupts
It should be noted that there are two interrupt modules that handle link interrupts. (The
Serial module and the Timer module also include ISR's). The first one is INTBSP, which
includes the platform specific error code. It is a simple module whose primary purpose is
to call into the INT module when an interrupt occurs.

5.2.7 Errors
The various error return codes are listed in Chapter 10, Error Codes.

Many functions return a value of type RETURN_CODE. This is an integer type of some
size (an unsigned char in the current implementation). All of the possible values that the
function may return are listed in the function documentation.

RETURN_CODEs greater than or equal to E_ERROR in value are error conditions.
Those below E_ERROR in value are not error conditions.

It is possible to ignore the return code if you do not care about the distinction between
them. Before returning with an error code, the function always calls the macro
ERROR(). In the current implementation, this macro sends a signal to the monitor. In
production code, it is expected that you will choose to define away this macro. In
preproduction code however, this macro could prove useful.

Some errors occur in places where it is impossible to return an error code. In this case,
the code will call the FATAL_ERROR() macro.

See the error module documentation for more information on the ERROR() and
FATAL_ERROR() macros.

5.2.8 Watermarks
The BSP also includes the Watermark module, which supports a stack watermark.
Watermarks are documented in the documentation of that module.

Page 40 Philips Semiconductors  2000

5.2.9 Porting to a new Platform
When porting the code to a new platform, only the BSP section of the code needs to be
modified. However, depending on the type of port done, only some sections of the BSP
may need to be ported.

If the new port is another 8051 platform with no operating system, only the HW, Startup,
and Error modules have to be modified.

If the new port is a completely different platform but still does not contain an operating
system, the IntBSP, Serial, SelfTest, Watermark, and memcpy51 modules must be
modified.

See the documentation for the Int module. This describes some optional changes.

5.2.10 Porting to an Operating System
When porting to a system that includes an operating system, there are several things that
can be done that may make the code more efficient. Of course, the new platform changes
will probably have to be done as well.

The PktQ and Event modules implement functionality that is normally present in an
operating system. Rewriting these two packages so that they use operating system
services will provide greater functionality. For example, the PktQ package maps almost
directly to the message queue library in VxWorks.

5.2.11 Porting to Another 1394 Link
The code and the API is fairly Philips specific. For example, packets are formatted in the
Philips specific format rather than the 1394 format. Therefore, porting to a non-Philips
link chip is not recommended. If the link chip uses the same packet format, the only
packages that need to be changed are the Int, AsyHW, IsoHW, and LinkHW packages.

Porting to a new Philips link chip should not be too difficult. Unless major modifications
have been made, only the LinkHW module may need to be changed.

5.3 API Overview
This section is designed to give an overview on how the modules work together.

The diagram below gives a picture of how three of the most significant API modules in
the embedded program fit together. The AsyHW and the IsoHW constitute what is often
termed the Hardware Abstraction Layer. The asynchronous module sits on top of the
AsyHW module and provides an interface for assembling asynchronous packets, which is
called the transaction layer in the 1394 specification. There is no corresponding module
for the Isoch communications - the L21 hardware and the hardware attached to the AV
port is responsible for assembling the packets.

Philips Semiconductors  2000 Page 41

The hardware abstraction modules do not talk directly to hardware (although they are the
only modules that truly understand the structure of the module). They both use the GS
module to read and write registers. The constants that they use are defined in the
LinkHW module. The link's memory mapped I/O location is specified in the HW module
in the BSP, along with macros that access these locations.

The Int package is also considered a hardware abstraction module. Its responsibilities are
for those hardware parts that have to be serviced inside of an interrupt subroutine.

The only other API module is the Bus Reset module. This module handles the Bus Reset
interrupt, collecting and verifying the self-ids. It also builds the topology map and speed
map CSR's.

Figure 5-2: API Overview

Philips Link Layer

Philips Physical Layer

Page 42 Philips Semiconductors  2000

5.3.1 Asynch Module
By far the most important module in the API is the Asynch module, the IEEE 1394
transaction layer, which provides a non-blocking interface. There are two ways to use the
non-blocking interface. The best method is to use the completionEvent parameter to
define an event. The Asynch module will then throw the event when the transaction is
complete.

The other way is to poll the state parameter in the request structure. When it reaches
REQUEST_COMPLETE or ABORTED_ERROR, the transaction is complete.

Note: This module operates in a non-blocking manner. This means that most
functions return to the calling function immediately. The request is not complete
until a message is sent indicating that it is complete.

More information can be found in the API Programmer’s Reference Manual.

5.3.1.1 Overview
This module is responsible for handling asynchronous transactions. It is designed to be
fairly device independent, depending on the hardware abstraction of the AsyHW module.
This module corresponds to the transaction layer in the IEEE-1394 specification.

This software matches requests, responses, and confirmations, provides timeouts, and
handles other abnormal conditions such as bus resets. It is also capable of answering
internal requests.

This layer does not determine which module is responsible for answering a request. This
task is handled by the 1394 module.

5.3.1.2 AsynchRequestParams structure
Most of the functions in this module take a pointer to an AsynchRequestParams structure
as a parameter. This structure forms the backbone of this module, and has the following
members.

IN USER_LABEL userLabel

The user label. This may be used to identify the structure any way that is desired.
This label is never used by the embedded software.

IN QUAD _XDATA *requestPacket

A pointer to the first four quadlets of the request (or to three quadlets if the request is
only three quadlets long). This consists of the entire packet for all packet types
except block & lock requests.

IN QUAD _XDATA *requestPacketBody

A pointer to the data block for block and lock requests. If the request is not a block or
lock request, this pointer is not used.

Philips Semiconductors  2000 Page 43

IN QUAD _XDATA *confPacket

A pointer to a QUAD where the confirmation packet will be stored.

IN QUAD _XDATA *responsePacket

A pointer to a buffer which will hold 4 quadlets where the response packet will be
stored, except in the case of a block read or response, where this pointer is only used
to store the header.

IN QUAD _XDATA *responsePacketBody

A pointer to a buffer, which will hold the block, read response body data. If a block
read response is not received, this pointer is not used.

IN QUAD _XDATA *packetTail

A pointer to a QUAD, which holds the Philips specific tail appended to received
packets.

IN EVENT_ID completionEvent

This event will be sent when the service is complete.

IN SMALLINT generationCount

This is the generation count that corresponds with the request. If the generation count
is different from the current generation count, this means that a bus reset has
occurred. This means that the request is invalid, asynchronous traffic does not
survive a bus reset because the node id's may have changed between generations. To
read the current generation count, use AsynchCurrentGeneration(). E_BUS_RESET
is returned if the generation count does not match AsynchCurrentGeneration() at any
point during the progress of the request.

OUT enum AsynchRequestState state

Holds the progress of the service

OUT RETURN_CODE errorCode

If state == ABORTED_ERROR, this holds the error.

struct AsynchRequestScratch scratch

A block of memory used by the service to hold status variables and other private
information.

5.3.1.3 Implementation Details
The following diagrams show the program flow for incoming and outgoing asynchronous
requests. There is descriptive text describing the boxes in the API Programmer’s
Reference Manual.

Page 44 Philips Semiconductors  2000

Appropriate
function

AsynchTx
Request

Call

AsynchPoll

Hardware
(AsyHW or

Int)

Asynch 1394
layer

AsyHWTx
Request

Call

IntHandle
Asy

AsynchReq
ConfPacket
RxHandle

INT_
RRSPCONF_

EVENT

Ignore

CONFIRMATION_
RECEVIED_

EVENT

IntHandle
Asy

AsynchRsp
Packet

RxHandle

INT_
RRSPQQAV_

EVENT

Appropriate
function

completion
Event

completion
Event

(failure)

ASYNCH_POLL_EVENT

AsyHWRead
ResponseQ

AsyHWRead
ResponseQ

call

return

call

return

Request

Ack

Response

Figure 5-3: Asynchrous Outgoing Request Flow

Philips Semiconductors  2000 Page 45

Hardware
(AsyHW or

Int)

Asynch 1394
layer

IntHandleAsy

S1394Req
Packet
Malloc

INT_REQQQAV_EVENT

AsynchReq
PacketRx

call

S1394Request
RxHandle

S1394_
REQUEST_
RECEIVED_

EVENT

Appropriate
Request
Handler

AsynchTx
Response

call

AsyHWTx
Response

AsynchPoll

call

IntHandleAsy

AsynchResp
ConfPacket
RxHandle

INT_RRSPCONF
_EVENT

Appropriate
Request
Handler

completion
Event

AsyHWRead
RequestQ

call

return

ASYNCH_POLL_EVENT

AsyHWRead
ResponseQ

call

returnAck

Response

Request

5.3.1.4 Porting to a Preemptive Multitasking System
If this transaction layer is ported to a system that contains a preemptive multitasking
system, it will work as long as only one thread sends asynchronous requests. However,
the software may be much more useful if more than one thread can send requests.

Figure 5-4: Asynchrous Incoming Request Flow

Page 46 Philips Semiconductors  2000

Access to the hardware must always be serialized, as it has no concept of threads.
Therefore, this module should be run in its own, separate thread. So that more than one
thread can send and receive packets, one design would be to place pointers to outgoing
AsynchRequestParams structures in a thread safe queue. Functions like
AsynchTxRequest may read the structure off of the queue one at a time.

A preemptive multitasking system has access to proper semaphores. This suggests that
an alternative mechanism for determining when a request is complete may be used. A
semaphore can be added to the AsynchRequestParams structure that is claimed by the
Asynch package when it receives the request, and then released when the structure
reaches the REQUEST_COMPLETE or ABORTED_ERROR state. Adding the
semaphore is not required but may make using this transaction layer easier.

5.3.1.5 AsynchTxRequest
This function queues an asynchronous request for transmission. It is an entry point for
the asynchronous request service. This service transmits requests and collects the
confirmations and the responses. It matches the confirmations and responses with the
request and sends messages with these values.

This function supports quadlet and block read and write requests, as well as lock requests.
Broadcast writes are also supported.

This function expects a fully formed packet in the format specified in the Philips 1394
AV Link specification. The only exception is the TLabel. A TLabel is generated and
inserted into the packet. If TLabel type functionality is desired, the userLabel parameter
may be used for this.

This service accepts packets addressed to this node. If this is the case, the packet is
handled internally. Specifically, a REQUEST_RECIEVED_EVENT event is thrown.
This functionality may be disabled for a small memory savings with the
RESPOND_TO_OWN_REQUESTS macro.

PHY packets may also be transmitted with this function. If this is the case, requestPacket
should point to the Philips-specific header quadlet and requestPacketBody should point to
the PHY quadlet. There should be a free quadlet after the PHY quadlet as the check
quadlet is inserted there. PHY packets are not echoed to the internal node.

An AsynchRequestParams structure holds the parameters for this service. This structure
is used for the duration of the service. It must not be modified until the completionEvent
message is sent.

When the confirmation is received, a CONFIRMATION_RECEIVED_EVENT message
is sent with a pointer to the request structure as its parameter. This message is not sent
for requests addressed to this node. The event may be safely ignored.

When the service has completed, the completion Event message is sent. The parameter is
a pointer to the original request structure. This message is always sent, even if an error
has occurred and the message was never sent. When this message is sent, the state will
always be REQUEST_COMPLETE or ABORTED_ERROR.

Philips Semiconductors  2000 Page 47

The state parameter is a monotonically increasing value. There may be internal state
values that are not externally published, but the user application may poll the state
register to determine if major milestones have been passed. For example, if (state >=
CONFIRMATION_RECEIVED), the application may determine that the confirmation
has been received and processed without receiving the
CONFIRMATION_RECEIVED_EVENT message.

5.4 Application Overview
Besides the API and the BSP, the supplied code has been lumped together into the
application. However, the modules in the application section perform several distinct
tasks.

5.4.1 Main
Main is responsible for initializing all of the packages and then executing the main loop.
The main loop is responsible for two things: blinking the LED in a heartbeat pattern, and
dispatching events.

5.4.2 Monitor Support
The Monitor package provides support for the host monitor. It implements the interface
to the host monitor described in the interface documentation. The only exception is that
the Error module sends the error messages to the monitor.

5.4.3 1394 Reference Implementation
The majority of the application section implements a reference 1394 application. The
two modules that do this are the 1394 and the CSR packages.

The reference implementation is far from complete, yet may implement as much as is
needed, depending on the application. The reference implementation is not in an API
format - to change the nature of this section, the code itself has to be changed. These two
packages have also been kept deliberately simple, so changing them should not be
difficult.

Chapter 7, Software Compliance documents where the Full Duplex RDK is non-
compliant.

5.4.4 Example Code
The Pkt1394 package has two main duties: to implement a remote command architecture,
and to provide an example of how the API may be used. This package has not been
widely tested.

Page 48 Philips Semiconductors  2000

6 Serial Interface Documentation
6.1 Overview
The serial interface between the monitor and the embedded software is a standard RS-232
port running at 9600 bps, 8N1. All passage of messages between the monitor and
embedded software takes place using packets consisting of a line of ASCII text followed
by a line feed ('\r' or 0x0D). The embedded software does not echo characters back.

There are four possible types of packets that may be sent over the serial port. Commands
are sent from the host to the embedded software, and responses, event and errors are sent
from the embedded software to the host.

If a response, event, or error is received from another node on the bus instead of the local
node, the string is preceded by a nodeid string. See the Pkt1394 package for more details
on this capability.

Note: All packets in commands and events are in the Philips format; please refer
to the PDI1394L21 data sheet for more information

6.2 Commands and Responses
Commands always follow the form command arg0 arg1 ... argN CRC32. The CRC32
value follows the reference implementation in section 6.4 of IEEE 1394-1995. If there
are no arguments, the CRC32 value may be omitted. Only the first four characters of the
command are significant.

So that the serial port is useful when a terminal program is used instead of the monitor,
the CRC32 value may be replaced by a zero.

Responses are always in the format: response resp0 resp1 ... respN CRC32. The response
portion is an ASCII string. The most common responses are: OK, CRC_bad, busy, or
‘huh?’. The response data is numeric represented as an eight digit hexadecimal string. If
there is no response data, the CRC32 value is omitted.

A response may be terminated by a !! glyph. This indicates that the response was
prematurely terminated by an error. The error packet will follow.

All numeric responses and parameters are in hexadecimal. The embedded software
always prints out eight digits for each number regardless of whether the number is 32 bits
or shorter. Command parameters do not have to be eight digits long.

6.2.1 Register access
rdreg register

Reads the AVLink register at offset register and returns its value. register must be a
quadlet aligned offset between 0 and FF.

Philips Semiconductors  2000 Page 49

wrreg register value

Writes the quadlet value to the AVLink register register. register must be a quadlet
aligned offset between 0 and FF. Returns OK.

rdphy register

Reads the PHY register at offset register and returns its value. register must be an
offset between 0 and F.

wrphy register value

Writes the quadlet value to the PHY register register. register must be an offset
between 0 and F. Returns OK.

rdbir start_register number_of_registers

Reads the AV Link L40 registers at offset start_register with how many registers to
be read number_of_registers and returns their values.

wrbir start_register arg0 arg1 ... argN

Writes the arguments arg0 arg1 ... argN to AV Link L40 registers at offset
start_register. Returns OK.

6.2.2 Asynchronous communications
txrq quadlets

Transmits an asynchronous request packet on the 1394 bus. Returns OK. The 1394
asynchronous response is returned inside of events.

txphy quadlets

Transmits a PHY packet packet on the 1394 bus. Returns OK.

asyhold

Temporarily stops asynchronous transmission. All packets for transmission will be
queued but not transmitted. Returns OK.

asygo

Releases the asynchronous hold. All packets queued for transmission will be sent.
Returns OK.

6.2.3 Isochronous communications
isoinit type MAXBL DBS portdirection

This function initializes the isochronous portion of the chip. type selects the format

Page 50 Philips Semiconductors  2000

of the transmission: 1 for MPEG2, 2 for DSS, 3 for DVC, and 4 for cPLD. MAXBL
and DBS select the maximum number of blocks per cycle and the data block size for
the transmission. If portdirection is 1, isoinit sets port 1 to transmit and port 2 to
receive. If the portdirection is 0, port 1 is set to receive and port 2 to transmit.
Returns OK.

txgo

Starts the isochronous transmitter. Returns OK.

rxgo

Starts the isochronous receiver. Returns OK.

txstop

Stops the isochronous transmitter. Returns OK.

rxstop

Stops the isochronous receiver. Returns OK.

txchannel channel speed

Sets the isochronous transmission channel to channel, and the speed of that channel to
0=100Mbps, 1=200Mbps, 2=400Mbps. Returns OK.

rxchannel channel

Sets the isochronous receiver channel to channel. Returns OK.

6.2.4 Misc. 1394 functions
busreset

Starts a bus reset. Returns OK.

crquad offset quadlet

Sets the configuration ROM quadlet #offset to quadlet. Note that changes do not go
into effect until crset is requested. As well, the STATE_SET CSR should be set to
reject asynchronous transactions between the first call to crquad and the call to crset.
Returns OK.

crset num_quadlets

Transfers all the quadlets transmitted via crquad into the configuration ROM CSR
space. Returns OK.

Philips Semiconductors  2000 Page 51

6.2.5 Debug & Verification commands
hello

Returns the response 'yo'. This command is used to verify communications

ldon

Turns the LED on. Returns OK.

ldoff

Turns the LED off. Returns OK.

rdxdata address

Reads and returns a byte from xdata memory address.

wrxdata address value

Writes the byte value to xdata memory address. Returns OK.

version

Returns the version string.

wipememory

Erases the code area in XData in preparation for a download. Returns OK.

6.3 Events
Events are differentiated from normal responses by the characters !%, which start the
event. Events always follow the format !%EVENT quadlets %!. The last quadlet of the
series is a CRC32 value of the form in Section 6.4 of IEEE 1394-1995. If the ending %!
is replaced with !! this indicates that not all of the quadlets of the event were transmitted.
REQRX quadlets

quadlets were received as an asynchronous request.

RSPRX quadlets

quadlets were received as an asynchronous response.

RSP quadlets

quadlets were synthesized as a response to a request to an internal node.

REQCONF quadlets

quadlet was received as a confirmation packet after a request was transmitted.

Page 52 Philips Semiconductors  2000

RSPCONF quadlets

quadlet was received as a confirmation packet after a response was transmitted.

REQTX quadlets

quadlets were transmitted as an asynchronous request.

RSPTX quadlets

quadlets were transmitted as an asynchronous response.

BUS_RESET node# self-ids nodes

A bus reset was detected. node# specifies the new node id. self-ids specifies how
many self-id packets were received. nodes indicates how many nodes there are on the
bus. The self-id quadlets are not transferred. They may be determined by reading the
topology map CSR.

POWER_ON

The next four events all correspond to interrupts that were noticed by the embedded
software but that the embedded software was unable to handle. The quadlet that is
transmitted with the interrupt notification is a bit mapped register corresponding to the
Interrupt Acknowledge register in the AVLink chip.

Only interrupts that the embedded software does not know how to handle are returned
using these events. Many of these interrupts are acknowledged and disabled inside of the
ISR in case these unknown interrupts are capable of flooding the system. Therefore, if
you wish to see these interrupts in the future, you will have to re-enable them.

• LNKPHYINT register

• ASYINT register

• IRXINT register

• ITXINT register

6.4 Downloading
If a command begins with ":" it is interpreted as a line in a .HEX file for software
downloading. The line is interpreted and copied into RAM. If the checksum matches,
OK is returned, otherwise error is returned. Lines that return error should be resent. The
last line of a .HEX file has an end of file flag. If the monitor notices this flag, the
software resets the board to execute the code in RAM.

Ensure that you do not swamp the 8051 with data when downloading the file. The easiest
way to do this is to wait for the OK response before sending the next line. If you get an
error response, the software expects you to resend the line.

Philips Semiconductors  2000 Page 53

7 Software Compliance
7.1 Overview
This RDK deals with the IEEE 1394-1995 and 1394A Serial Bus standard and various
other related standards. This chapter details the compliance of the RDK to these various
standards, specifying what is supported and what is not.

There are several ways in which standards are not followed (Please refer to the following
sections for more details):

• The software does non-compliant things that are standard practice;

• Some unsupported functionality can be flagged as supported to allow the RDK
user the greatest flexibility;

• Certain functionality exists which goes beyond what is required in order to best
demonstrate features of the Philips Link and PHY chipset;

• Certain functionality is marked as optional in the spec and has not been
implemented; and

• Particularly in the AV/C area, certain things are outside the scope of the RDK.

7.2 Cycle Master
The embedded code should make the software fully compliant and capable of performing
Cycle Master duties. The software starts cycle master activity if it is the root, which is
slightly non-compliant with the IEEE –1394-1995 and 1394A specification, but follows
common practice. See section 8.4.2.6 of the specification for more details

Most of the tasks required for Cycle Master activities are performed by the AV LINK
without assistance from software.

7.3 Isochronous Resource Manager (IRM)
The embedded code is not fully IRM capable. The IRM CSR registers, as defined in
IEEE 1394-1995, are supplied. However, the state machine, as specified in IEEE 1394-
1995 8.5.2, has not been implemented. As well, it does not activate a cycle master as
specified in section 8.4.2.6 of the specification.

Even though the code is not fully IRM capable, the RDK hardware can be set so that the
node is advertised as IRM capable to a bus reset. This is the contender bit, and can be set
by setting S6 switch 4, labeled CMC.

7.4 Bus Manager
The embedded code is not Bus Manager compliant, and does not contend for the position
of Bus Manager. The code collects the Self-ID's and supplies them in the form of the

Page 54 Philips Semiconductors  2000

TOPOLOGY_MAP CSR. The SPEED_MAP CSR is also generated. These two CSR's
are needed for a Bus Manager compliant implementation, but may be removed to save
memory for non-Bus Manager applications.

The only non-obvious change that will have to be made during removal of the
TOPOLOGY_MAP is the function AsynchCurrentGeneration(), which uses the
TOPOLOGY_MAP generation count variable to keep track of bus resets.

7.5 ISO/IEC 61883 and AV/C
Since the RDK is a reference design kit and not an end-user application, only subsets of
the Connection Management Procedures (CMP) and the Function Control Protocol (FCP)
were implemented. These subsets are presented as an implementation guide and not a
full implementation of the standard.

For example, the CSR Plug Control Registers (PCR) and Master Plug Registers have
been supplied, as required by ISO/IEC 61883, but setting these registers does not
establish connections. That is because the RDK is designed to be a multi-use reference
kit that has no application identity (i.e. a camera) that requires the connection protocol.

For the FCP, a very practical example that allows the RDK to access and control a
camera on the network is included. This example shows a part of the command set that
can be used with an AV/C compliant device on the network.

The AV LINK, once configured, transmits fully compliant isochronous packets.

Philips Semiconductors  2000 Page 55

8 Customer Support
Philips Semiconductors are committed to giving you, our customer, the best possible
technical support. If your system appears to be functioning incorrectly, please attempt a
self-diagnosis with the help of the Troubleshooting section, Chapter 9.

If you are still having troubles, please follow these steps before contacting our technical
support teams:

1. Be sure to read the relevant sections of the documentation. Many times the answer is
right there.

2. Document the problem you are experiencing. Be as specific as you can. It is also
useful to know the following:

a. The RDK board serial number;

b. Your operating system release version; and, if applicable

c. Settings used during software compilation

For assistance on installation and operation of the Full Duplex RDK, please contact:

Philips Semiconductors

1394 Applications and Marketing Group

Email: 1394@philips.com

URL: http://www.semiconductors.philips.com/1394

For assistance on Philips Semiconductors A/V Link Layer Controller (AV LINK) or the
Physical Layer Interface (PDI1394P11), please contact:

your local Philips sales representative

or send email to: 1394@philips.com

For assistance on other Philips Semiconductor parts, please contact:

your local Philips sales representative

Page 56 Philips Semiconductors  2000

9 Troubleshooting
9.1 General Problems
Problem: The User LED is blinking strangely.
Solution: This may be the heartbeat, indicating that embedded software is running

smoothly. If the beat is regular and seems to blink, at around 80 beats per
minute, this is the heartbeat

If the beat is significantly slower and repeats in a pattern of X flashes
followed by Y flashes, this indicates an embedded error. See Chapter 10:
Error Codes, for more information.

9.2 Serial communications
Problem: The monitor refuses to start, complaining about being unable to

communicate with the embedded code.
Solutions: In order of simplicity:

1. Verify the physical connections, close and re-start the monitor.
2. Make sure the port you are using is the correct one and is not shared with
other applications. Some other applications may still have their port driver
running even if they are closed correctly. In that case, you may have to
reboot your computer.
3. The embedded software may be in an unusual state, ensure an EPROM
with the original embedded code is in the socket and press the reset button.

9.3 Link and PHY Register Windows
Problem: The register buttons become blank when the Read Once button is clicked.
Solution: You have a communications problem. See section 9.2: Serial

Communications and try again after waiting for the read attempt to time out.

9.4 Asynchronous Transactions
This section assumes that any of the problems discussed above are not occurring.

Problem: The monitor asks for the parameters, then nothing happens.
Solution: The problem is probably with your node. Verify that the LNKCTL register

begins with C600, the ASYCTL register displays 00100320, and that the
ASYINTACK register shows 00003F8C.

Problem: An embedded error E_CONF_NO_RESPONSE is seen.
Solution: This result occurs if you are sending your packet to a non-existent node.

Make sure that the destination node is between 0 and 3E. If the problem
persists, verify that the LNKCTL register of the destination node begins
with C600.

Philips Semiconductors  2000 Page 57

Problem: The monitor asks for the parameters, then “Request split time out” appears
on the screen.

Solution: Your node received an acknowledgement but no response. First make sure
that the LNKCTL register begins with C600. Then verify that the
ASYINTACK register is 00003F8C. If they are correct, check the same
registers on the destination node and ensure that the ASYCTL register is
00100320.

9.5 Bus Resets
This section assumes that all tests in the serial communications and registers subsections
have passed.

Problem: Initiating a bus reset or plugging/unplugging doesn’t seem to have any
effect.

Solution: Verify that the fifth digit of the LNKPHYINTE register is 2
(LNKPHYINTE is supposed to be 00042000

9.6 Loading HEX Files
This section assumes that there are no serial communications problems.

Problem: An error message reading, “Error wiping memory in preparation for
download” is seen.

Solution: The wipememory command failed. This can be the result of a serial
communications problem or an embedded error.

Problem: An error message reading, “Too many errors at line n when downloading
hex file” is seen.

Solution: Either there is an error in that particular line of the hex file, so it should be
recompiled, or too many total errors have occurred during the download.
This may happen with imperfect communications, and with a very large hex
file.
The only solution if the hex file is correct is to try again, or improve the
quality of the serial link.

Page 58 Philips Semiconductors  2000

10 Error Codes
10.1 Overview
There are two types of errors that can be brought up by the embedded software: fatal
errors and non-fatal errors.

The following section lists the errors and associated blink codes. For example, a blink
code of (4,5) would be shown as four blinks, a short pause, five blinks, and then a long
pause before the sequence repeats. These blinks codes will replace the normal heartbeat
pattern on the User LED in the event of a fatal error.

Although non-fatal errors have blink codes associated with them, they are handled by the
monitor software and are not displayed on the User LED.

The fatal errors are:

• E_CABLE_LOOP

• E_TOO_MANY_BUS_RESETS

• E_EVENT_Q_FULL

• E_PHY_TIMEOUT

• E_LINKPHY_FATAL_INTERRUPT

• E_ASY_FATAL_INTERRUPT

• IRX_FATAL_INTERRUPT

• ITX_FATAL_INTERRUPT

• E_RAM_CHECK

• E_PKTQ_FULL

• E_PKTQ_EMPTY

Note: The DONE return code specifies that the function completed without errors.
It also indicates that the service has completed if it is found in
AsynchRequestParams.errorCode. Compare with the PENDING return code.

10.1.1 PENDING (blink code 1,2)
This return code indicates that the request has been queued and will be completed at a
subsequent time.

Returned by:

• AsynchTxRequest

• AsynchTxResponse

Philips Semiconductors  2000 Page 59

• AsynchRspPacketRxHandle

• AsynchPoll

10.1.2 E_ERROR (blink code 1,3)
This error code is never returned. It is a placeholder indicating the minimum integral
value for RETURN_CODE that indicates an error. In other words, all values less than
this code are normal return codes; all greater than it are error codes.

10.1.3 E_REQ_MALLOC_TIMEOUT (blink code 1,4)
This error indicates that the embedded software was unable to allocate memory for a
request after a large number of retries. This indicates that the previous request did not
time out correctly.

10.1.4 E_ASYTXREQ (blink code 1,5)
This error code indicates that a hardware error occurred during the transmission of an
asynchronous request packet.

Returned by:

• AsyHWTxRequest

• AsynchPoll

10.1.5 E_ASYTXRESP (blink code 1,6)
This error code indicates that a hardware error occurred during the transmission of an
asynchronous response packet.

Returned by:

• AsyHWTxResponse

10.1.6 E_NO_QUADLETS_AVAILABLE (blink code 1,7)
This error code indicates that the number of quadlets requested is not in the queue.

Returned by:

• AsyHWReadReqQ

10.1.7 E_ROUTER_TABLE_FULL (blink code 1,8)
This error code indicates that the asynchronous request transmission service was unable
to obtain a router table entry for the TLABEL.

Returned by:

• AsynchTxRequest

• AsynchTxResponse

Page 60 Philips Semiconductors  2000

10.1.8 E_LOOP_DETECTED (blink code 2,1)
This error code indicates that the code detected a loop in an internal linked list. Most
likely, a pointer to a parameter structure was passed to a function when the parameter
structure was still in use.

Returned by:

• AsynchTxRequest

• AsynchTxResponse

10.1.9 E_BUS_RESET (blink code 2,2)
Not an error per se, but a code that is returned when a request is unable to be completed
because a bus reset has interrupted it. Also, note that the request structure may be
corrupted.

In the case of a request, this indicates that the request may or may not have been
transmitted, and that the node receiving the request may or may not have acted on the
request.

In the case of a response, this indicates that the response may or may not have been
transmitted.

In the case of an outgoing request, this error must be handled carefully. In some cases it
is enough to retransmit the request. In others, it may be desirable to read some state
information on the target to determine if the request was or was not processed. In a very
few cases this error may be ignored.

Returned by:

• AsyHWTxRequest

• AsyHWTxResponse

• AsyHWReadReqQ

• AsynchTxRequest

• AsynchTxResponse

• AsynchRspPacketRxHandle

• AsynchReqConfPacketRxHandle

• AsynchRespConfPacketRxHandle

• AsynchReqPacketRx

• AsynchPoll

10.1.10 E_RESP_MANGLED (blink code 2,3)
This error code indicates that somehow the asynchronous response packet received was
corrupted or an unexpected confirmation arrived.

Philips Semiconductors  2000 Page 61

Returned by:

• AsynchRspPacketRxHandle

10.1.11 E_CONF_MANGLED (blink code 2,4)
This error code indicates that somehow the confirmation packet was corrupted or an
unexpected confirmation arrived.

Returned by:

• AsynchReqConfPacketRxHandle

• AsynchRespConfPacketRxHandle

10.1.12 E_CONF_NO_RESPONSE (blink code 2,5)
This error code indicates that the confirmation received did not indicate acknowledge
pending. There will not be a response. See confPacket for additional details.

Note: The most common source of this error is that the destination node does not
exist.

Returned by:

• AsynchReqConfPacketRxHandle

10.1.13 E_CONF_ERROR (blink code 2,6)
This error code indicates that the confirmation received did not indicate acknowledge
complete.

Returned by:

• AsynchRespConfPacketRxHandle

10.1.14 E_CONF_TIMEOUT (blink code 2,7)
This error code indicates that confirmation was not received within the timeout period.

10.1.15 E_REQ_MANGLED (blink code 2,8)
This error code indicates that a corrupted request was received.

Returned by:

• AsynchReqPacketRx

10.1.16 E_PACKET_MANGLED (blink code 3,1)
An error that is returned when an AsynchRequestParams structure is in an unexpected
state.

Page 62 Philips Semiconductors  2000

Returned by:

• AsynchTxRequest

• AsynchTxResponse

• AsynchPoll

10.1.17 E_UNSUPPORTED_TCODE (blink code 3,2)
This error code indicates that either you attempted to use the wrong function to look at a
packet, or the packet was corrupted.

Returned by:

• AsynchPoll

10.1.18 E_TIMEOUT (blink code 3,3)
This error code indicates that no response was received to an asynchronous request
within a BUSY_TIMEOUT interval.

10.1.19 E_BR_NO_IDVALID (blink code 3,4)
This error code indicates that the bus reset software timed out waiting for the IDVALID
bit to be set after a bus reset. This error often indicates a hardware problem..

Returned by:

• BREventHandle

10.1.20 E_BR_NO_HEADER (blink code 3,5)
Received a self-id packet missing the 0x000000E0 header quadlet.
Returned by:

• BREventHandle

10.1.21 E_BR_MULTIPLE_HEADERS (blink code 3,6)
Self-id includes multiple header quadlets i.e. multiple 0x000000E0 quadlets.

Returned by:

• BREventHandle

10.1.22 E_BR_SIDQAV_NOT_SEEN (blink code 3,7)
Bit SIDQAV was not set by the Link upon the reception of a self-id packet.

Returned by:

• BREventHandle

Philips Semiconductors  2000 Page 63

10.1.23 E_BR_PACKET_TIMEOUT (blink code 3,8)
Received a truncated self-id packet. This could be the result of a bus reset in the middle
of the self-id phase.

Returned by:

• BREventHandle

10.1.24 E_BR_ACK_DATA_ERROR (blink code 4,1)
This error code indicates that the link terminated the self-id sequence with
"ACK_DATA_ERROR".

Returned by:

• BREventHandle

10.1.25 E_BR_INVALID_PACKET (blink code 4,2)
This error code indicates that an invalid packet was seen in the self-id sequence.

Returned by:

• BREventHandle

10.1.26 E_INVALID_TOPO_MAP (blink code 4,3)
This error code indicates that BRBusTree tried to build a bus tree from an invalid
topology map.

Returned by:

• BRBusTree

10.1.27 E_INVALID_NODE_TREE (blink code 4,4)
This error code indicates that the structure nodeTree (generated by BRBusTree) was
incorrectly built.

Returned by:

• BRBusTree

10.1.28 E_CABLE_LOOP (blink code 4,5)
This error code indicates that the bus topology is not a tree. The 1394 cables are
connected in a loop.

Returned by:

• BRBusResetHappened

Page 64 Philips Semiconductors  2000

10.1.29 E_BR_CYCLE_START (blink code 4,6)
This error code indicates that a cycle start packet was inserted into the self-id data.

Returned by:

• BREventHandle

10.1.30 E_TOO_MANY_BUS_RESETS (blink code 4,7)
This error code indicates that too many bus resets with errors were noticed.

10.1.31 E_INTERNAL (blink code 4,8)
Internal error.

10.1.32 E_EVENT_Q_FULL (blink code 5,1)
This error code indicates that the Event Q has overflowed. The size may be adjusted
inside the PktQ module. However, the most likely cause is either that the system is hung
or overburdened and is no longer dispatching events, or that something has started an
infinite loop creating events.

10.1.33 E_INVALID_EVENT_ID (blink code 5,2)
This error code indicates that somehow, the event queue was corrupted.

Returned by:

• EventHandle

10.1.34 E_PHY_TIMEOUT (blink code 5,3)
This error code indicates that during a read or write to the PHY, the procedure timed out.
If this was not an error, change PHY_TIMEOUT.

Returned by:

• GSReadPhyReg

• GSWritePhyReg

10.1.35 E_LINKPHY_FATAL_INTERRUPT (blink code 5,4)
This error code indicates that a fatal LINKPHY interrupt occurred, or an interrupt that the
API uses was mistakenly enabled.

Returned by:

• HandleLinkPhyInt

10.1.36 E_ASY_FATAL_INTERRUPT (blink code 5,5)
A fatal ASY interrupt occurred, or an interrupt that the API uses was mistakenly enabled.

Philips Semiconductors  2000 Page 65

Returned by:

• IntHandleAsy

10.1.37 IRX_FATAL_INTERRUPT (blink code 5,6)
This error code indicates that a fatal IRX interrupt occurred, or an interrupt that the API
uses was mistakenly enabled.

10.1.38 ITX_FATAL_INTERRUPT (blink code 5,7)
This error code indicates that a fatal ITX interrupt occurred, or an interrupt that the API
uses was mistakenly enabled.

10.1.39 E_RAM_CHECK (blink code 5,8)
This error code indicates that the RAM failed the initial start up diagnostics.

10.1.40 E_ROM_CHECK (blink code 6,1)
This error code indicates that the ROM failed the initial start up diagnostics. If you are
running from RAM then ignore this error.

10.1.41 E_TEST_FAIL (blink code 6,2)
This error code indicates that one of the manufacturing tests failed. Check the serial port
output for more information.

10.1.42 E_PKTQ_FULL (blink code 6,3)
This error is probably in user code. The RDK code generally calls PktQFull() before
writing to the queue so that a more specific error code may be returned.

Returned by:

• PktQWrite

10.1.43 E_PKTQ_EMPTY (blink code 6,4)
This error code indicates that one of the packet queues was empty but somebody tried to
get a packet anyway. Call PktQEmpty() before attempting to get a packet.

Returned by:

• PktQRead

10.1.44 E_SERIAL_TX_Q_FULL (blink code 6,5)
This error code indicates that the serial port's transmit queue is full.

Returned by:

Page 66 Philips Semiconductors  2000

• SerialPutChar

10.1.45 E_SERIAL_RX_OVERFLOW (blink code 6,6)
This error code indicates that the serial port’s Rx buffer has overflown. There is no form
of flow control in the serial package. However, if you wait for a response each line, you
will not have any troubles.

Philips Semiconductors  2000 Page 67

11 Glossary
The various acronyms, abbreviations, and special terms used frequently in this manual
are here defined for convenient reference.

1394 A fast external serial bus standard originally developed by Apple
under the name FireWire. Other names for this technology
include I-link, and Lynx.

80C51 A standard, low cost microprocessor
ActiveX A set of rules defined by Microsoft for how applications should

share information.
API Application Program Interface. A set of routines, protocols, and

tools for building software applications.
ASCII American Standard Code for Information Interchange
AV Audio/Video
AV/C Audio/Video Command set
Bpm Beats Per Minute
Bps Bits Per Second
Block A series of sequential 8-bit bytes, with the number of bytes set as

part of the transaction.
Breakout An expansion of a register into its constituent fields.
BSP Board Support Package
C51 Processor See 80C51
CMOS Complimentary Metal Oxide Semiconductor
Command and
Status Registers

Software registers known as Command and Status Registers. A
CSR occupies 32 bits, that is, one quadlet.

CPLD Complex Programmable Logic Device
CSR Command and Status Register
DSS Digital Satellite System
DVC Digital Video Camera
DVD Digital Versatile Disc
Enables Bits set to a value in order to enable a function.
EPROM Erasable Programmable Read-Only Memory
GUI Graphical User Interface
IEC International Electrotechnical Committee
IEEE Institute of Electrical and Electronic Engineers
IRM Isochronous Resource Manager
ISO International Standards Organization

Page 68 Philips Semiconductors  2000

Isochronous The constant-bandwidth capability of 1394 bus architecture to
transmit continuous data streams, particularly the transport of
digital audio and video signals. A 1394 node can be configured to
transmit or receive one isochronous data stream at a time. Once
the node has been configured with the various isochronous
parameters, no further intervention is required. The process of
transmission or reception of the data stream is handled by the
PDI1394 chipset.

LED Light Emitting Diode
MB/s Megabytes per second
MPEG-2 (MPEG stands for Motion Picture Experts Group). A high

compression isochronous format, commonly seen in satellite TV,
video cameras, and DVD players.

PDF Portable Document Format
PDI1394L21 Identifier of the link chip which handles transactions between

1394 boards. The PDI1394L21 Philips Semiconductors 1394
Audio/Video Link Layer Controller is an IEEE 1394-1995
compliant link layer controller featuring an embedded AV layer
interface. The AV layer is designed to pack and unpack
application data packets for transmission over an IEEE 1394 bus
using isochronous data transfers. It runs at 49.978 MHz and uses
3.3 V. For detailed information refer to the Hardware Reference
and the PDI1394L21 datasheet.

PHY Registers of the PDI1394P11 3-port physical layer interface.
Port Direction The direction setting of the PDI1394L21.
Quadlet A length of 4 bytes, 32-bit quantities.
RDK Reference Design Kit
Registers A high speed data storage area within a CPU.
RO Read-Only
ROM Read-Only Memory
RS-232 A standard interface for connecting serial devices.
VCR Video Cassette Recorder
Win32 The Microsoft Windows API for developing 32-bit applications.
Win9x The Microsoft Windows 95 or 98 operating system.

For more information please contact:

Philips Semiconductors
Email: 1394@philips.com

URL: http://www.semiconductors.philips.com/1394

